Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Relevant Physical Phenomena Controlling Thermal Performance of Nanofluids

[+] Author Affiliations
M. Bahrami

University of Victoria

M. M. Yovanovich, J. R. Culham

University of Waterloo

Paper No. IMECE2006-13417, pp. 187-198; 12 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


This paper provides an overview of the important physical phenomena necessary for the determination of effective thermal conductivity of nanofluids. Through an investigation, a large degree of randomness and scatter has been observed in the experimental data published in the open literature. Given the inconsistency in the data, it is impossible to develop a comprehensive physical-based model that can predict all the trends. This also points out the need for a systematic approach in both experimental and theoretical studies. Upper and lower bounds are developed for steady-state conduction in stationary nanofluids. Comparisons between these bounds and the experimental data indicate that all the data (except for carbon nanotube data) lie between the lower and upper bounds.

Copyright © 2006 by ASME
Topics: Nanofluids



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In