Full Content is available to subscribers

Subscribe/Learn More  >

Optical Properties of Nanocomposite Thin-Films

[+] Author Affiliations
Anna Garahan, Laurent Pilon, Juan Yin

University of California at Los Angeles

Indu Saxena

Intelligent Optical Systems, Inc.

Paper No. IMECE2006-13309, pp. 177-186; 10 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4784-5 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


This paper aims at developing numerically validated models for predicting the through-plane effective index of refraction and absorption index of nanocomposite thin-films. First, models for the effective optical properties are derived from previously reported analysis applying the volume averaging theory (VAT) to the Maxwell's equations. The transmittance and reflectance of nanoporous thin-films are computed by solving the Maxwell's equations and the associated boundary conditions at all interfaces using finite element methods. The effective optical properties of the films are retrieved by minimizing the root mean square of the relative errors between the computed and theoretical transmittance and reflectance. Nanoporous thin-films made of SiO2 and TiO2 consisting of cylindrical nanopores and nanowires are investigated for different diameters and various porosities. Similarly, electromagnetic wave transport through dielectric medium with embedded metallic nanowires are simulated. Numerical results are compared with predictions from widely used effective property models including (1) Maxwell-Garnett Theory, (2) Bruggeman effective medium approximation, (3) parallel, (4) series, (5) Lorentz-Lorenz, and (6) VAT models. Very good agreement is found with the VAT model for both the effective index of refraction and absorption index. Finally, the effect of volume fraction on the effective complex index of refraction predicted by the VAT model is discussed. For certain values of wavelengths and volume fractions, the effective index of refraction or absorption index of the composite material can be smaller than that of both the continuous and dispersed phases. These results indicate guidelines for designing nanocomposite optical materials.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In