Full Content is available to subscribers

Subscribe/Learn More  >

Sensitivity of General Compound Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters

[+] Author Affiliations
Yichao Guo, Robert G. Parker

Ohio State University, Columbus, OH

Paper No. DETC2007-35802, pp. 647-670; 24 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 10th International Power Transmission and Gearing Conference
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4808-6 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


This paper studies sensitivity of general compound planetary gear natural frequencies and vibration modes to all inertia and stiffness parameters. The results are expressed in compact formulae for tuned and mistuned compound planetary gears. Analysis reveals that for tuned (i.e., cyclically symmetric) compound planetary gears, eigenvalue sensitivities to stiffness parameters are directly proportional to modal strain energies, and eigenvalue sensitivities to inertia parameters are proportional to modal kinetic energies. Furthermore, the eigenvalue sensitivities to all model parameters are determined by inspection of the modal strain and kinetic energy distributions for a given mode. For mistuned systems, the results differ for the cases of tuned one mistuned parameter, two or more independent mistuned parameters, and two or more dependent mistuned parameters. For cases of one mistuned parameter, and two or more independent mistuned parameters, compact formulae of eigensensitivities are derived, and they are proportional to modal strain/kinetic energies. For the case of two or more dependent mistuned parameters, however, only general expressions of eigensensitivities are derived. These eigensensitivities depend not only on modal energies, but also on how the dependent mistuned parameters are related. Hence inspection of modal energies alone may fail to locate the parameter that is most effective in tuning natural frequencies.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In