0

### Full Content is available to subscribers

Subscribe/Learn More  >

# The Mathematical Model for the Generation of the Cylindrical Gear With Curved Cycloidal Teeth

[+] Author Affiliations
Iulian Stanasel, Petru Ungur, Oana Stanasel

University of Oradea, Oradea, Romania

Adrian Ghionea, Ionut Ghionea

“Politehnica” University of Bucharest, Bucharest, Romania

Paper No. DETC2007-34501, pp. 279-287; 9 pages
doi:10.1115/DETC2007-34501
From:
• ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
• Volume 7: 10th International Power Transmission and Gearing Conference
• Las Vegas, Nevada, USA, September 4–7, 2007
• Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
• ISBN: 0-7918-4808-6 | eISBN: 0-7918-3806-4
• Copyright © 2007 by ASME

## abstract

The performed studies regarding the cylindrical gears with curved teeth or in V showed that a uniform distribution of the load on the flanks is hard to realise, generally being necessary later finishing processing or modifying the gear by camber or flanking, which suppose supplementary expenses. On the basis of these mentions and taking into account the advantages of curved bevel gear, the purpose of this paper is to present an original study regarding the mathematical model for generation of a curved cylindrical gear with high performances. The cycloidal gear was chosen after a technical and an economical study regarding on the possibility of practical implementation with the lowest production costs using a special device, adapted on a Phauter processing machine of cylindrical gear. This was the main reason for choosing a cycloidal profile from several types of curved teeth (cycloidal arc, circle arc, Archimede’s spiral, involute arc). So, the main aim of the paper is to determine the equations of the flanks of cylindrical wheel with curved teeth in oblong cycloidal arc, in order to establish if the technical generation is possible. The curved cylindrical teeth with cycloidal flanks is generated by rolling with straight mobile line and continuous division by using a milling cutter with 1, 2, 3, 6 groups of knifes equidistantly placed, fixed on an adaptable device on a Phauter processing machine. The two curves which define the flank are simultaneously generated by correlated motions, and the flanks of the wheel part result as a roll of successive positions of generating hook materialized by the cutting edge of the tool. The shape of the contact curve between the conjugated surfaces of generating element and the wheel part can be obtained if you are taking into account the kinematic condition. Using this condition you can determine the relationship between the kinematic, geometric and technological parameters. The line of the flanks is studied in the reference plane and in parallel planes with this, and the profile of the flanks is determined in perpendicular planes on the work piece axis. Based on the parametric equations it was made the simulation program in MATLAB that indicates that this gears can be obtained, and constitutes the first step in practical manufacturing of this kind of gears. By analyzing the obtained shape they result useful conclusions for the manufacturing of the involute-tooth gear with curved oblong cycloidal arc. On the other hand, using Solid Edge it was made the spatial modeling of the cylindrical gear with curved cycloidal teeth that allows next FEA studies regarding on the contact and bending stress.

Copyright © 2007 by ASME
Topics: Gears

## Interactive Graphics

### Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

### Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

• TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
• EMAIL: asmedigitalcollection@asme.org
Sign In