Full Content is available to subscribers

Subscribe/Learn More  >

Nondimensional Analysis on the Mitigation of Hard Surface Roughness Induced Torque on Hard Cylinders by Introduction of a Soft Interfacial Layer for Precision Positioning Applications

[+] Author Affiliations
Steven R. H. Barrett

University of Cambridge

Alexander H. Slocum

Massachusetts Institute of Technology

Paper No. IMECE2006-15603, pp. 147-151; 5 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Tribology
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4782-9 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


It is widely known that surface roughness and other geometric imperfections can impose a limit on the positioning precision of actuators. The case of a hard cylinder rolling on a hard layer is investigated here, as it is applicable to friction drives. It is proposed that a soft interfacial layer between the drive roller and drive rail can mitigate the effects of geometric imperfections on positioning accuracy. Positioning accuracy is characterized by way of a 'roughness torque', which is the maximum torque that the roller sustains due to roughness of the rail. It is assumed that lower roughness torque values lead to greater positioning accuracy. Finite element analysis and an analytic approach are employed to investigate the situation.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In