Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of the Elastic Properties of Contact Between Nominally Flat Rough Surfaces Using a New Multiple Point Asperity Model

[+] Author Affiliations
A. Hariri, J. W. Zu, R. Ben Mrad

University of Toronto

Paper No. IMECE2006-14130, pp. 117-124; 8 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Tribology
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4782-9 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


The asperities of rough surfaces have long been considered to be points higher than their immediate neighbors. Based on this concept, theories were developed for quantitatively understanding the nature of contact between rough surfaces. Recently it has been recognized that the above model for asperities is inadequate. Consequently, all the models that have been developed based on that model are inadequate as well. In this paper, based on a newly developed multiple-point asperity model, the elastic contact problem between nominally flat surfaces is reformulated. This leads to finding the deformed area, and load produced by the contact. The model is developed for the general form of isotropic rough surfaces with arbitrary height distribution and autocorrelation function (ACF). The microcontact areas generated by each asperity contact are considered to be circles. The Gaussian distribution of heights and exponential ACF are considered as a benchmark to compare the results of the new model with the existing models. Using results from numerical models developed by other groups, the new model is validated.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In