Full Content is available to subscribers

Subscribe/Learn More  >

The Surface Roughness Effect on the Dynamic Stiffness and Damping Characteristics of the Hydrostatic Thrust Spherical Bearing: Part 4 — Fitted Type of Bearings

[+] Author Affiliations
A. W. Yacout, A. S. Ismaeel, S. Z. Kassab

Alexandria University

Paper No. IMECE2006-13026, pp. 93-104; 12 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Tribology
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4782-9 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


Analytical solutions are not available for spherical bearing problems except for very specialized cases. However, this study offers a theoretical analysis, using the first order perturbations, to evaluate the frequency dependent stiffness and damping characteristics of compensated hydrostatic thrust spherical bearing including the surface roughness, the shaft rotation and the recess volume fluid compressibility effects. The dynamic stiffness and damping coefficients are presented for capillary tube and/or office compensated bearing. Results are obtained for various vibration frequencies or squeeze parameters (frequency parameters) and recess volume fluid compressibility parameters in addition to the other usual bearing design parameters. The study shows that both of the surface roughness and the centripetal inertia have slight effect on the stiffness and the damping coefficients while the recess volume fluid compressibility parameter has the major effect on the bearing dynamic characteristics.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In