Full Content is available to subscribers

Subscribe/Learn More  >

A New Slip Model for Gas Lubrication

[+] Author Affiliations
Sheng Shen, Gang Chen

Massachusetts Institute of Technology

Robert M. Crone, Manuel Anaya-Dufresne

Seagate Technology

Paper No. IMECE2006-16275, pp. 71-76; 6 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Tribology
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4782-9 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


In this paper, a new slip boundary condition is derived using the solution of the Boltzmann equation. The physical mechanisms of velocity slip in rarefied gas flow are discussed and emphasized. The Poiseuille flow rates predicted by the new slip model show better agreements with those calculated from the existing slip models such as 1st, 2nd, and 1.5th slip order. Based on the new slip model, a new modified Reynolds equation is also proposed to predict the pressure field in gas lubrication problem.

Copyright © 2006 by ASME
Topics: Lubrication



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In