Full Content is available to subscribers

Subscribe/Learn More  >

On Optimization of 2D Compliant Mechanisms Using Honeycomb Discretization With Material-Mask Overlay Strategy

[+] Author Affiliations
Anupam Saxena

Indian Institute of Technology - Kanpur, Kanpur, UP, India

Paper No. DETC2007-34341, pp. 1331-1341; 11 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 33rd Design Automation Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4807-8 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


Novel honeycomb tessellation and material mask overlay methods are proposed in this paper to obtain optimal planar compliant topologies free from checkerboard and point flexure pathologies. A cardinal reason, namely the presence of strain-free rotation regions in rectangular cell based discretization is identified to be a cause in appearance of such singularities. With each hexagonal cell sharing an edge with its neighboring cells, strain-free displacements are not permitted anywhere in the continuum. The new material assignment approach manipulates material within a group of cells as opposed to a single cell thereby reducing the number of variables making optimization efficient. Optimal solutions obtained are free from intermediate material states and can be manufactured directly after design, without requiring any post processing. The proposed procedure is illustrated using two classical examples in 2D compliant mechanisms solved using genetic algorithm.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In