0

Full Content is available to subscribers

Subscribe/Learn More  >

Bayesian Reliability Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method

[+] Author Affiliations
Pingfeng Wang, Byeng D. Youn, Lee J. Wells

Michigan Technological University, Houghton, MI

Paper No. DETC2007-35524, pp. 1247-1262; 16 pages
doi:10.1115/DETC2007-35524
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 33rd Design Automation Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4807-8 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

In the last decade, considerable advances have been made in Reliability-Based Design Optimization (RBDO). It is assumed in RBDO that statistical information of input uncertainties is completely known (aleatory uncertainty), such as a distribution type and its parameters (e.g., mean, deviation). However, this assumption is not valid in practical engineering applications, since the amount of uncertainty data is restricted mainly due to limited resources (e.g., man-power, expense, time). In practical engineering design, most data sets for system uncertainties are insufficiently sampled from unknown statistical distributions, known as epistemic uncertainty. Existing methods in uncertainty based design optimization have difficulty in handling both aleatory and epistemic uncertainties. To tackle design problems engaging both epistemic and aleatory uncertainties, this paper proposes an integration of RBDO with Bayes Theorem, referred to as Bayesian Reliability-Based Design Optimization (Bayesian RBDO). However, when a design problem involves a large number of epistemic variables, Bayesian RBDO becomes extremely expensive. Thus, this paper presents a more efficient and accurate numerical method for reliability method demanded in the process of Bayesian RBDO. It is found that the Eigenvector Dimension Reduction (EDR) Method is a very efficient and accurate method for reliability analysis, since the method takes a sensitivity-free approach with only 2n+1 analyses, where n is the number of aleatory random parameters. One mathematical example and an engineering design example (vehicle suspension system) are used to demonstrate the feasibility of Bayesian RBDO. In Bayesian RBDO using the EDR method, random parameters associated with manufacturing variability are considered as the aleatory random parameters, whereas random parameters associated with the load variability are regarded as the epistemic random parameters. Moreover, a distributed computing system is used for this study.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In