0

Full Content is available to subscribers

Subscribe/Learn More  >

Interval Reliability Analysis

[+] Author Affiliations
Xiaoping Du

University of Missouri at Rolla, Rolla, MO

Paper No. DETC2007-34582, pp. 1103-1109; 7 pages
doi:10.1115/DETC2007-34582
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 33rd Design Automation Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4807-8 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Traditional reliability analysis uses probability distributions to calculate reliability. In many engineering applications, some nondeterministic variables are known within intervals. When both random variables and interval variables are present, a single probability measure, namely, the probability of failure or reliability, is not available in general; but its lower and upper bounds exist. The mixture of distributions and intervals makes reliability analysis more difficult. Our goal is to investigate computational tools to quantify the effects of random and interval inputs on reliability associated with performance characteristics. The proposed reliability analysis framework consists of two components — direct reliability analysis and inverse reliability analysis. The algorithms are based on the First Order Reliability Method and many existing reliability analysis methods. The efficient and robust improved HL-RF method is further developed to accommodate interval variables. To deal with interval variables for black-box functions, nonlinear optimization is used to identify the extreme values of a performance characteristic. The direct reliability analysis provides bounds of a probability of failure; the inverse reliability analysis computes the bounds of the percentile value of a performance characteristic given reliability. One engineering example is provided.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In