0

Full Content is available to subscribers

Subscribe/Learn More  >

An Extension of the Commonality Index for Product Family Optimization

[+] Author Affiliations
Aida Khajavirad, Jeremy J. Michalek

Carnegie Mellon University, Pittsburgh, PA

Paper No. DETC2007-35605, pp. 1001-1010; 10 pages
doi:10.1115/DETC2007-35605
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 33rd Design Automation Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4807-8 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

One critical aim of product family design is to offer distinct variants that attract a variety of market segments while maximizing the number of common parts to reduce manufacturing cost. Several indices have been developed for measuring the degree of commonality in existing product lines to compare product families or assess improvement of a redesign. In the product family optimization literature, commonality metrics are used to define the multi-objective tradeoff between commonality and individual variant performance. These metrics for optimization differ from indices in the first group: While the optimization metrics provide desirable computational properties, they generally lack the desirable properties of indices intended to act as appropriate proxies for the benefits of commonality, such as reduced tooling and supply chain costs. In this paper, we propose a method for computing the commonality index introduced by Martin and Ishii using the available input data for any product family without predefined configuration. The proposed method for computing the commonality index, which was originally defined for binary formulations (common / not common), is relaxed to the continuous space in order to solve the discrete problem with a series of continuous relaxations, and the effect of relaxation on the metric behavior is investigated. Several relaxation formulations are examined, and a new function with desirable properties is introduced and compared with prior formulations. The new properties of the proposed metric enable development of an efficient and robust single-stage gradient-based optimization of the joint product family platform selection and design problem, which is examined in a companion paper.

Copyright © 2007 by ASME
Topics: Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In