0

Full Content is available to subscribers

Subscribe/Learn More  >

Improving Student Design Skills Through Successive Design and Build Projects

[+] Author Affiliations
Rober Choate, Kevin Schmaltz

Western Kentucky University

Paper No. IMECE2006-14734, pp. 285-292; 8 pages
doi:10.1115/IMECE2006-14734
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Innovations in Engineering Education: Mechanical Engineering Education, Mechanical Engineering Technology Department Heads
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Mechanical Engineering Education, Mechanical Engineering Technology Department Heads
  • ISBN: 0-7918-4781-0 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

Mechanical Engineering students at Western Kentucky University (WKU) are given instruction and must demonstrate their abilities to execute design projects during each of their four years of study. The features and goals of these projects are governed by a Professional Plan, which assures that graduates of the program have experienced key areas of the engineering profession and shown the ability to perform in an acceptable professional manner. The Engineering Design component of the Professional Plan is the focal point of the professional experiences. For students to be able to execute a structured approach to solving problems with an appreciation for the art of engineering, they must experience meaningful projects that expand and challenge their capabilities. WKU ME freshmen individually create physical devices with little engineering science, developing a sense of the manufacturing skills required for realistic designs. Sophomore students execute a team design project with more technical expectations, and also individually complete a design and build project that continues from their freshman project. As juniors, the team design experience is extended to an external audience with greater technical rigor, and additionally student teams implement the ASME Student Design Competition (ASME SDC) as their design and build project. The goal is for seniors to be prepared to implement an industry-based design and build project subject to realistic constraints and customer needs. The implementation of the Engineering Design Component has evolved over the past four years guided by ongoing assessment of both course outcomes and program outcomes, internal and external evaluations of the design project outcomes, and the maturing status of the program facilities and curriculum. One strength of the Professional Plan framework is the ability to build upon previous coursework, assess student progress, and adjust course activities based on prior assessment results to assure that graduates are capable of practicing as engineers. This paper will detail a sustainable model for implementing the design process across the curriculum, with the basis for selecting projects, managing the efforts of student teams, and providing effective feedback. In addition to the engineering design component, the use of professional communications and professional tools are also structured within the design projects.

Copyright © 2006 by ASME
Topics: Design , Students

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In