Full Content is available to subscribers

Subscribe/Learn More  >

Cycle-Based Robot Drive Train Optimization Utilizing SVD Analysis

[+] Author Affiliations
Xiaolong Feng, Shiva Sander-Tavallaey

ABB Corporate Research, Västerås, Sweden

Johan Ölvander

Linköping University, Linköping, Sweden

Paper No. DETC2007-34772, pp. 903-910; 8 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 33rd Design Automation Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4807-8 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


Designing a drive train for an industrial robot is a demanding task where a set of design variables need to be determined so that optimal performance is obtained for a wide range of different duty cycles. The paper presents a method where singular value decomposition (SVD) is used to reduce the design variable set. The application is a six degree of freedom serial manipulator, with nine drive train parameters for each axis and the objective is to minimize the cycle time on 122 representative design cycles without decreasing the expected lifetime of the robot. The optimization is based on a simulation model of the robot and conducted on a reduced set of the initial duty cycles and with the design variables suggested by the SVD analysis. The obtained design reduces the cycle time with 1.6% on the original design cycles without decreasing the life time of the robot.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In