0

Full Content is available to subscribers

Subscribe/Learn More  >

A Dual Environment for 3D Modeling With User-Defined Free Form Features

[+] Author Affiliations
Thomas R. Langerak, Joris S. M. Vergeest

Delft University of Technology, Delft, The Netherlands

Paper No. DETC2007-34796, pp. 829-838; 10 pages
doi:10.1115/DETC2007-34796
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 33rd Design Automation Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4807-8 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Modeling with free form features has become the standard in Computer-Aided Design (CAD). With the increasing complexity of free form CAD models, features offer a high-level approach to modeling shapes. However, in most commercial modeling packages, only a static set of free form features is available. Researchers have tried to solve this problem by coming up with methods for user-driven free form feature definition, but failed to connect their methods to a means to instantiate these user-driven free form features on a target surface. Reversely, researchers have proposed tools for modeling with free form features, but these methods are time-intensive in that they are as of yet unsuitable for pre-defined features. This paper presents a new method for user-driven feature definition, as well as a method to instantiate these user-defined features on a target surface. We propose the concept of a dual environment, in which the definition of a feature is maintained simultaneously with its instance on a target surface, allowing the user to modify the definition of an already instantiated feature. This dual environment enables dynamic feature modeling, in which the user is able to change the definition of instantiated features on-the-fly. Furthermore, the proposed instantiation method is independent from the type of shape representation of the target surface and thereby increases the applicability of the method. The paper includes an extensive application example and discusses the results and shortcomings of the proposed methods.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In