Full Content is available to subscribers

Subscribe/Learn More  >

Theory, Fabrication, and Characterization of MEMS Devices: An Interdisciplinary Course for Mechanical Engineers

[+] Author Affiliations
B. R. Flachsbart, S. Prakash, J. Yeom, Y. Wu, G. Z. Mozsgai, Z. C. Leseman, K. Wong, C. R. Connell, E. J. Correa, M. R. Hansen, M. A. Shannon

University of Illinois at Urbana-Champaign

Paper No. IMECE2006-13741, pp. 3-8; 6 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Innovations in Engineering Education: Mechanical Engineering Education, Mechanical Engineering Technology Department Heads
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Mechanical Engineering Education, Mechanical Engineering Technology Department Heads
  • ISBN: 0-7918-4781-0 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


The need to provide students with hands-on instruction in the fabrication of Microelectromechanical Systems (MEMS) led to the development of an upper-undergraduate, introductory-graduate, laboratory course offered each spring in the Department of Mechanical Science and Engineering (MechSE). The laboratory is taught in a class 100 cleanroom located in, and operated by, the MechSE department. Fabrication and testing of two MEMS device projects, a piezoresistive membrane pressure sensor and a microfluidic logic chip, facilitate the teaching of standard fabrication procedures, fabrication tool operation, and cleanroom protocols. The course appeals across disciplines as evident by half the students coming from other departments (chemical engineering, chemistry, material science, physics, electrical engineering, aeronautical engineering, etc.). The course also serves to attract prospective graduate students as many students continue to use the cleanroom in their graduate level research. This course broadly covers MEMS fabrication theory while maintaining a focus on practical understanding and laboratory application of that theory. The lecture is tied closely to the laboratory work by covering the tool and procedure theory that is used in the lab each week. An exciting aspect of the course is the hands-on learning experience the students get by independently operating the fabrication equipment themselves, including metal deposition tools, reactive ion etch (RIE) tools, lithography tools (spinners, mask aligners, etc.), and bath etchers and cleaners. Safety is an important aspect of the course where students are tested on safety protocol, Material Safety Data Sheet (MSDS) and National Fire Protection Agency (NFPA) familiarity, personal protection procedures, etc. The students also learn benchmark fabrication procedures including standard cleaning protocols (with ultrasonics), the Bosch RIE etching of silicon microstructures, and anisotropic etching of silicon. The piezoresistive membrane pressure sensor project facilitates an understanding of the residual stresses involved in thin-film deposition, stress-strain relationships, and signal analysis for transduction mechanisms. The microfluidic logic chip project, a chip of logic gates (NAND, NOR, etc.) and a half-adder, facilitates understanding fundamental principles of microfluidics, the Navier-Stokes equation, and flow in microchannels. This course, originally sponsored by Intel Corporation, prepares Mechanical Engineers in a multi-disciplinary environment to learn both the practical fundamentals and the theoretical basis of basic and advanced microfabrication that goes beyond the usual CMOS fabrication theory and methodology taught in Electrical Engineering for the microelectronics bound students. As evident from its popularity, the course also serves to excite and equip students for the important Mechanical Engineering field of MEMS.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In