0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of a Vehicle Space Frame Under Ballistic Impact Loading

[+] Author Affiliations
Umakanth Sakaray

Zempleo Inc., Peoria, IL

Mohamed B. Trabia, Brendan J. O’Toole, Jagadeep Thota

University of Nevada at Las Vegas, Las Vegas, NV

Paper No. DETC2007-34157, pp. 317-324; 8 pages
doi:10.1115/DETC2007-34157
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 33rd Design Automation Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4807-8 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Shock from impact loading may risk the lives of the occupants of a military vehicle and damage the sensitive electronic components within it. A finite element model (FEM) for a space-frame based military vehicle is presented in this paper. An approach is developed to optimize the design of the joints within the space frame structure to reduce the mass of the vehicle while maintaining its structural integrity. The process starts by creating a parametric FEM of the vehicle. The optimization variables are the lengths of joint branches. The effect of joint location within the space frame is also explored. The problem is subject to geometry and stress constraints. Results show that a mass reduction can be achieved without adversely affecting integrity of the vehicle.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In