0

Full Content is available to subscribers

Subscribe/Learn More  >

A Graph Grammar Approach to Generate Neural Network Topologies

[+] Author Affiliations
Chaitanya Vempati, Matthew I. Campbell

University of Texas at Austin, Austin, TX

Paper No. DETC2007-34588, pp. 79-89; 11 pages
doi:10.1115/DETC2007-34588
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 33rd Design Automation Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4807-8 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Neural networks are increasingly becoming a useful and popular choice for process modeling. The success of neural networks in effectively modeling a certain problem depends on the topology of the neural network. Generating topologies manually relies on previous neural network experience and is tedious and difficult. Hence there is a rising need for a method that generates neural network topologies for different problems automatically. Current methods such as growing, pruning and using genetic algorithms for this task are very complicated and do not explore all the possible topologies. This paper presents a novel method of automatically generating neural networks using a graph grammar. The approach involves representing the neural network as a graph and defining graph transformation rules to generate the topologies. The approach is simple, efficient and has the ability to create topologies of varying complexity. Two example problems are presented to demonstrate the power of our approach.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In