0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Properties of Electrospun Carbon Nano Fiber (ECNF)/Epoxy Nanocomposites

[+] Author Affiliations
Darunee Aussawasathien

National Metal and Materials Technology Center, Klong Luang, Pathumthani, Thailand

Erol Sancaktar

University of Akron, Akron, OH

Paper No. DETC2007-34403, pp. 415-422; 8 pages
doi:10.1115/DETC2007-34403
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications and the 19th Reliability, Stress Analysis, and Failure Prevention Conference
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4805-1 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Electrospun polyacrylonitrile (PAN) fiber precursor based Carbon Nanofiber (CNF) mats were produced and impregnated with epoxy resin. The mechanical properties of as-prepared nanofibers in the mat and short fiber filled epoxy nanocomposite forms were determined to demonstrate the effect of fiber aspect ratio and interconnecting network on those properties. Our experimental results reveal that epoxy nanocomposites containing Electrospun Carbon Nano Fibers (ECNF) with high fiber aspect ratio and high interconnecting network in the non-woven mat form yield better mechanical properties than those filled with short ECNFs. The ECNF mat in epoxy nanocomposites provides better homogeneity, more interlocking network, and easier preparation than short ECNFs. Mechanical properties of ECNF mat-epoxy nanocomposites, which we obtained using tensile and flexural tests, such as stiffness and modulus increased, while toughness and flexural strength decreased, compared to the neat epoxy resin. Dynamic Mechanical Analysis (DMA) results showed, higher modulus for ECNF mat-epoxy nanocomposites, compared to those for neat epoxy resin and short ECNF-epoxy nanocomposites. The epoxy nanocomposites had high modulus, even though the glass transition temperature, Tg values dropped at some extents of ECNF mat contents when compared with the neat epoxy resin. The cure reaction was retarded since the amount of epoxy and hardener decreased at high ECNF contents together with the hindering effect of the ECNF mat to the diffusion of epoxy resin and curing agent, leading to low crosslinking efficiency.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In