Full Content is available to subscribers

Subscribe/Learn More  >

Full Band-Gap Silicon Phononic Crystals for Surface Acoustic Waves

[+] Author Affiliations
Saeed Mohammadi, Eric Massey, William D. Hunt, Ali Adibi

Georgia Institute of Technology

Abdelkrim Khelif

Institut FEMTO-ST

Ryan Westafer

Georigia Institute of Technology

Paper No. IMECE2006-16227, pp. 185-186; 2 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Noise Control and Acoustics
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Noise Control and Acoustics Division
  • ISBN: 0-7918-4776-4 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


Periodic elastic structures, called phononic crystals, show interesting frequency domain characteristics that can greatly influence the performance of acoustic and ultrasonic devices for several applications. Phononic crystals are acoustic counterparts of the extensively-investigated photonic crystals that are made by varying material properties periodically. Here we demonstrate the existence of phononic band-gaps for surface acoustic waves (SAWs) in a half-space of two dimensional phononic crystals consisting of hexagonal (honeycomb) arrangement of air cylinders in a crystalline Silicon background with low filling fraction. A theoretical calculation of band structure for bulk wave using finite element method is also achieved and shows that there is no complete phononic band gap in the case of the low filling fraction. Fabrication of the holes in Silicon is done by optical lithography and deep Silicon dry etching. In the experimental characterization, we have used slanted finger interdigitated transducers deposited on a thin layer of Zinc oxide (sputtered on top of the phononic crystal structure to excite elastic surface waves in Silicon) to cover a wide range of frequencies. We believe this to be the first reported demonstration of phononic band-gap for SAWs in a hexagonal lattice phononic crystal at such a high frequency.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In