0

Full Content is available to subscribers

Subscribe/Learn More  >

Energy Scavenging for Wireless Sensor Networks

[+] Author Affiliations
Xin Xue, Luis Gonzalez-Argueta, V. Sundararajan

University of California at Riverside, Riverside, CA

Paper No. DETC2007-35829, pp. 361-366; 6 pages
doi:10.1115/DETC2007-35829
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications and the 19th Reliability, Stress Analysis, and Failure Prevention Conference
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4805-1 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Conventional condition monitoring of electrical machinery is conducted by measuring signals such as currents and vibrations outside the motor. Wireless sensors now provide a means of accessing and measuring useful signals inside the motor where the phenomena responsible for failure occur. These sensors are capable of not merely sensing, but also processing, storage and eventually communication. Since all these activities require power that is supplied conventionally by batteries, the useful life of the sensor node is limited by the life of the battery. This paper describes the design of an energy scavenger capable of collecting energy from the fringing field in a three-phase induction motor. The field in the magnetic filed is converted to electrical energy for use in intelligent wireless sensor nodes. The alternating magnetic field in a three phase induction motor is first measured by the hall-effect sensors. A coil wound on a ferrite core harvests the leaked energy. The experimental results are compared to the theoretical calculations of induced voltage. The paper describes results from tests conducted with a prototype coil that is used to power wireless sensor nodes in a motor running at full speed.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In