Full Content is available to subscribers

Subscribe/Learn More  >

Flexure-Based Two Degree-of-Freedom Legs for Walking Microrobots

[+] Author Affiliations
Ankur M. Mehta, Kristofer S. J. Pister

University of California at Berkeley

Paper No. IMECE2006-15291, pp. 441-450; 10 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Microelectromechanical Systems
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Microelectromechanical Systems Division
  • ISBN: 0-7918-4775-6 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


This work examines the design of legs for a walking microrobot. The parameterized force-displacement relationships of planar serpentine flexure-based two degree-of-freedom legs are analyzed. An analytical model based on Euler-Bernoulli beam theory is developed to explore the design space, and is subsequently refined to include contact between adjacent beams. This is used to determine a successful leg geometry given dimensional constraints and actuator limitations. Standard comb drive actuators that output 100 μN of force over a 15 μm bi-directional throw are shown able to drive a walking gait with three legs on a 1 cm2 silicon die microrobot. If the comb drive suspensions cannot withstand the generated reaction moments, an alternate pivot-based leg linkage is proposed.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In