0

Full Content is available to subscribers

Subscribe/Learn More  >

Hydrogen Addition Effects on Swirl Stabilized Methane Flame

[+] Author Affiliations
H. S. Kim, V. K. Arghode, A. K. Gupta

University of Maryland, College Park, MD

Paper No. DETC2007-34133, pp. 601-623; 23 pages
doi:10.1115/DETC2007-34133
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 27th Computers and Information in Engineering Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4803-5 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Effect of hydrogen addition in methane-air premixed flames has been examined from a swirl stabilized combustor under confined flame conditions. Different swirlers have been examined to investigate the effect of swirl intensity on enriching methane-air flame with hydrogen in a laboratory-scale pre-mixed combustor operated at 5.81 kW. The flame stability was examined at same head load (5.81 kW) for various parameters such as amount of hydrogen addition, combustion air flow rates and swirl strengths. This was done by comparing adiabatic flame temperatures at the lean flame limit. The combustion characteristics of hydrogen enriched methane flames at constant heat load but different swirl strength were examined using particle image velocimetry (PIV), OH chemiluminescence, micro-thermocouples diagnostics to provide information on velocity and temperature field, and combustion generated OH concentration in the flame. Gas analyzer was used to obtain NOx and CO concentration at the exit. The results show that the the lean stability limit is mostly extended by hydrogen addition, but it can reduce in case of higher swirl intensity operating at lower adiabatic flame temperatures. The addition of hydrogen increases the NOx emission; however, this effect can be reduced by increasing either the excess air or swirl intensity. The results of NOx and CO emissions were also compared with a diffusion flame type combustor. The NOx emissions of hydrogen enriched methane premixed flame was found to be lower than the corresponding diffusion flame under the fuel lean condition.

Copyright © 2007 by ASME
Topics: Flames , Hydrogen , Methane

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In