0

Full Content is available to subscribers

Subscribe/Learn More  >

Geometric Modeling of Cutter/Workpiece Engagements for Helical Milling With Flat End Mills

[+] Author Affiliations
Eyyup Aras

University of British Columbia, Vancouver, BC, Canada

Derek Yip-Hoi

Western Washington University, Bellingham, WA

Paper No. DETC2007-35491, pp. 299-309; 11 pages
doi:10.1115/DETC2007-35491
From:
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 27th Computers and Information in Engineering Conference, Parts A and B
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4803-5 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME

abstract

Helical milling is a 3-axis machining operation where a cutting tool is feed along a helix. This operation is used in ramp-in and ramp-out moves when the cutting tool first engages the workpiece, for contouring and for hole machining. It is increasingly finding application as a means for roughing large amounts of material during high speed machining. Modeling the helical milling process requires cutter/workpiece engagements (CWEs) geometry in order to predict cutting forces. The calculation of these engagements is challenging due to the complicated and changing intersection geometry that occurs between the cutter and the in-process workpiece. In this paper we present a geometric modeling methodology for finding engagements during helical milling with flat end mills. A mapping technique has been developed that transforms a polyhedral model of the removal volume from Euclidean space to a parametric space defined by location along the tool path, engagement angle and the depth-of-cut. As a result, intersection operations are reduced to first order plane-plane intersections. This approach reduces the complexity of the cutter/workpiece intersections and also eliminates robustness problems found in standard polyhedral modeling and improves accuracy over the Z-buffer technique. The reported method has been implemented and tested using a combination of commercial applications. This paper highlights ongoing collaborative research into developing a Virtual Machining System.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In