Full Content is available to subscribers

Subscribe/Learn More  >

Postbuckling and Free Vibrations of Composite Beams

[+] Author Affiliations
Samir A. Emam

United Arab Emirates University, Al Ain, Abu Dhabi, UAE

Ali H. Nayfeh

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. DETC2007-35007, pp. 2045-2052; 8 pages
  • ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 21st Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C
  • Las Vegas, Nevada, USA, September 4–7, 2007
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4802-7 | eISBN: 0-7918-3806-4
  • Copyright © 2007 by ASME


An exact solution for the postbuckling configurations of composite beams is presented. The equations governing the axial and transverse vibrations of a composite laminated beam accounting for the midplane stretching are presented. The inplane inertia and damping are neglected, and hence the two equations are reduced to a single equation governing the transverse vibrations. This equation is a nonlinear fourth-order partial-integral differential equation. We find that the governing equation for the postbuckling of a symmetric or antisymmetric composite beam has the same form as that of a metallic beam. A closed-form solution for the postbuckling configurations due to a given axial load beyond the critical buckling load is obtained. We followed Nayfeh, Anderson, and Kreider and exactly solved the linear vibration problem around the first buckled configuration to obtain the fundamental natural frequencies and their corresponding mode shapes using different fiber orientations. Characteristic curves showing variations of the maximum static deflection and the fundamental natural frequency of postbuckling vibrations with the applied axial load for a variety of fiber orientations are presented. We find out that the line-up orientation of the laminate strongly affects the static buckled configuration and the fundamental natural frequency. The ratio of the axial stiffness to the bending stiffness is a crucial parameter in the analysis. This parameter can be used to help design and optimize the composite beams behavior in the postbuckling domain.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In