Full Content is available to subscribers

Subscribe/Learn More  >

Underfill Assessments and Validations for Low-k FCBGA

[+] Author Affiliations
Nicholas Kao, Jeng Yuan Lai, Jase Jiang, Yu Po Wang, C. S. Hsiao

Siliconware Precision Industries Company, Ltd.

Paper No. IMECE2006-15432, pp. 345-350; 6 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4769-1 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


With the trend of electronic consumer product toward more functionality, high performance and miniaturization, IC chip is required to deliver more I/Os signals and better electrical characteristics under same package form factor. Thus, Flip Chip BGA (FCBGA) package was developed to meet those requirements offering better electrical performance, more I/O pins accommodation and high transmission speed. For high-speed application, the low dielectric constant (low-k) material that can effectively reduce the signal delays is extensively used in IC chips. However, the low-k material possesses fragile mechanical property and high coefficient of thermal expansion (CTE) compared with silicon chip, which raises the reliability concerns of low-k material integrated into IC chip. The typical reliability failure modes are low-k layer delamination and bump crack under temperature loading during assembly and reliability test. Delamination is occurred in the interface between low-k dielectric layers and underfill material at chip corner. Bump crack is at Under Bump Metallization (UBM) corner. Thus, the adequate underfill material selection becomes very important for both solder bump and low-k chips [1]. This paper mainly characterized FCBGA underfill materials to guide the adequate candidates to prevent failures on low-k chip and solder bump. Firstly, test vehicle was a FCBGA package with heat spreader and was investigated the thermal stress by finite element models. In order to analyze localized low-k structures, sub-modeling technique is used for underfill characterizations. Then, the proper underfill candidates picked from modeling results were experimentally validated by reliability tests. Finally, various low-k FCBGA package structures were also studied with same finite element technique.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In