Full Content is available to subscribers

Subscribe/Learn More  >

Growth of Carbon Nanotubes on Carbon Toray Paper for Bio-Fuel Cell Applications

[+] Author Affiliations
Bhupesh Chandra, Joshua T. Kace, Yuhao Sun, James Hone

Columbia University, New York, NY

S. C. Barton

Michigan State University, East Lansing, MI

Paper No. ENIC2007-45038, pp. 69-71; 3 pages
  • ASME 2007 2nd Energy Nanotechnology International Conference
  • ASME 2007 2nd Energy Nanotechnology International Conference
  • Santa Clara, California, USA, September 5–7, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4799-3 | eISBN: 0-7918-3807-2
  • Copyright © 2007 by ASME


In recent years carbon nanotubes have emerged as excellent materials for applications in which high surface area is required e.g. gas sensing, hydrogen storage, solar cells etc. Ultra-high surface to volume ratio is also a desirable property in the applications requiring enhanced catalytic activity where these high surface area materials can act as catalyst supports. One of the fastest developing areas needing such materials is fuel-cell. Here we investigate the process through which carbon nanotubes can be manufactured specifically to be used to increase the surface area of a carbon paper (Toray™). This carbon support is used in bio-catalytic fuel cell as an electrode to support enzyme which catalyzes the redox reaction. Deposition of nanotubes on these carbon fibers can result in great enhancement in the overall surface area to support the enzyme, which increases the reaction rate inside the fuel cell. The present paper describes a method to achieve ultra-thick growth of multiwall carbon nanotubes (MWNT) on a carbon Toray™ paper using a joule heating process and gas-phase catalyst. Using this method, we are able to achieve rapid, high-density, and uniform MWNT growth. This method is also potentially scalable toward larger-scale production.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In