Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Radiation Involving Metallic Nanoparticles in the Near Field

[+] Author Affiliations
Pierre-Olivier Chapuis, Sebastian Volz, Marine Laroche, Jean-Jacques Greffet

Ecole Centrale Paris, Châtenay-Malabry Cedex, France

Paper No. ENIC2007-45021, pp. 39-44; 6 pages
  • ASME 2007 2nd Energy Nanotechnology International Conference
  • ASME 2007 2nd Energy Nanotechnology International Conference
  • Santa Clara, California, USA, September 5–7, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4799-3 | eISBN: 0-7918-3807-2
  • Copyright © 2007 by ASME


We firstly compare the electric and magnetic polarizabilities of a spherical nanoparticle. We then calculate the electromagnetic heat transfer between a metallic particle and a semi-infinite substrate. We show that the power absorbed by the particle in the near field is due to the magnetic interaction. We then calculate the energy transfer between two metallic nanoparticles and compare the heat dissipated by Joule effect and eddy currents. We find that the heat dissipated due to the magnetic fields is the leading contribution to the heat power. Both calculations show that a number of near-field effects involving metallic particles are affected by the fluctuating magnetic thermal fields.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In