0

Full Content is available to subscribers

Subscribe/Learn More  >

Reclaiming Electrolysis Reject Water With a Solar Still

[+] Author Affiliations
S. B. Sadineni, R. Hurt, C. K. Halford, R. F. Boehm

University of Nevada at Las Vegas, Las Vegas, NV

Paper No. ES2007-36001, pp. 807-813; 7 pages
doi:10.1115/ES2007-36001
From:
  • ASME 2007 Energy Sustainability Conference
  • ASME 2007 Energy Sustainability Conference
  • Long Beach, California, USA, July 27–30, 2007
  • Conference Sponsors: Solar Energy Division and Advanced Energy Systems Division
  • ISBN: 0-7918-4797-7 | eISBN: 0-7918-3798-X
  • Copyright © 2007 by ASME

abstract

Electrolysis is one sustainable pathway to hydrogen production. During this process, however, it is common to reject a large portion of the water during the pretreatment process to carry away impurities. We have been examining water-conserving approaches to this problem with low energy devices. One such approach is to couple the water purification step with a solar still, thus allowing some of the wastewater to be recycled and utilized in the hydrogen production. This paper reports on a study of a weir type solar still. A weir type solar still is an inclined solar still with the absorber plate formed to make weirs, as well as a top basin and a bottom basin. Raw water flows from the top basin through the weirs and to the bottom basin that is circulated back to the top basin by a small pump. Purified water is collected from condensate on the glass cover. The weir type solar still with 0.61 m width and 1.82 m length (net aperture area 0.97 m2 ) was constructed and tested for the Las Vegas weather conditions. A data acquisition system with temperature and flow rate sensors was also installed to record the transient variation of temperature and flow rate. The distillate productivity of the still with double-pane and single-pane glass covers is compared. The average distillate productivities for double-pane and single-pane glass covers were approximately 1.9 l/m2/day and 5.5 l/m2/day in the months of August and September in Las Vegas respectively. A double-pane glass reduced the productivity of a solar still significantly due to the reduced temperature difference between the raw water and the glass inner surface. The productivity of the weir type still is also compared with the basin type still tested at the same location side by side and is found that the weir type still productivity was approximately 20% higher. The quality of distillate from the still was also analyzed to verify the product will meet the purity required by electrolyzers.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In