Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Large Eddy Simulation Methods for Flows Over Gas Turbine Blades

[+] Author Affiliations
M. Karimi, M. Paraschivoiu

Concordia University, Montréal, QC, Canada

Paper No. GT2007-27410, pp. 1269-1280; 12 pages
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4795-0 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME


In recent years there has been a considerable effort toward applying large eddy simulation methods (LES) to real industrial problems. However, there are still several challenges to be addressed to achieve a reliable LES solution, especially in the context of compressible flows. Furthermore, complex geometries require the unstructured meshes which then interdict the use of very high order schemes. Therefore, LES models are mainly derived and tested on classical problem of simple geometry for incompressible flow and based on higher order schemes. Here, the flow over a gas turbine blade at high Reynolds and Mach numbers is investigated using a mixed finite-volume-finite-element method. Implicit LES method (ILES) as well as Smagorinsky and its dynamic version have been studied. Different variations of the Smagorinsky method have been examined too. The interaction of the numerical dissipation of the scheme with LES models has been explored. The results show the capability of the ILES to take into account the effective viscosity of the flow and the negligible difference of the different LES models in this flow condition. Fairly good agreement with experimental data is found which is superior to RANS results. It is found that there are still some challenges in industrial LES applications which have to be addressed to lead to a better agreement with experimental data.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In