0

Full Content is available to subscribers

Subscribe/Learn More  >

Flexure Pivot Tilting Pad Hybrid Gas Bearings: Operation With Worn Clearances and Two Load-Pad Configurations

[+] Author Affiliations
Luis San Andrés, Keun Ryu

Texas A&M University, College Station, TX

Paper No. GT2007-27127, pp. 759-769; 11 pages
doi:10.1115/GT2007-27127
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 5: Turbo Expo 2007
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4794-2 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

Gas film bearings enable the successful deployment of high-speed micro-turbomachinery. Foil bearings are in use; however, cost and lack of calibrated predictive tools prevent their widespread application. Other types of bearing configurations, simpler to manufacture and fully engineered, are favored by commercial turbomachinery manufacturers. Externally pressurized tilting pad bearings offer a sound solution for stable rotor support. This paper reports measurements of the rotordynamic response of a rigid rotor, 0.825 kg and 28.6 mm in diameter, supported on flexure pivot tilting pad hybrid gas bearings. The tests are performed for various imbalances, increasing supply pressures, and under load-on-pad (LOP) and load-between-pad (LBP) configurations. Presently, the initial condition of the test bearings shows sustained wear and dissimilar pad clearances after extensive testing reported earlier, see Ref. [1]. In the current measurements, there are no noticeable differences in rotor responses for both LOP and LBP configurations due to the light-weight rotor, i.e. small static load acting on each bearing. External pressurization into the bearings increases their direct stiffnesses and reduces their damping, while raising the system critical speeds with a notable reduction in modal damping ratios. The rotor supported on the worn bearings shows a ∼10% drop in first critical speeds and roughly similar modal damping than when tested with pristine bearings. Pressurization into the bearings leads to large times for rotor deceleration, thus demonstrating the little viscous drag typical of gas bearings. Rotor deceleration tests with manually controlled supply pressures eliminate the passage through critical speeds, thus paving a path for rotordynamic performance without large amplitude motions over extended regions of shaft speed. The rotordynamic analysis shows critical speeds and peak amplitudes of motion agreeing very well with the measurements. The synchronous rotor responses for increasing imbalances demonstrate the test system linearity. Superior stability and predictable performance of pressurized flexure pivot gas bearings can further their implementation in high performance oil-free microturbomachinery. More importantly, the measurements show the reliable performance of the worn bearings even when operating with enlarged and uneven clearances.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In