Full Content is available to subscribers

Subscribe/Learn More  >

Mechanics of Rotating Wound Rolls

[+] Author Affiliations
Raghavan Balaji, Eric M. Mockensturm

Pennsylvania State University

Paper No. IMECE2006-16238, pp. 503-512; 10 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4766-7 | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


In this paper, we investigate the effect of rotation on the internal loads in a wound roll and the dynamics of a fully wound roll under angular acceleration. Two different types of winding are distinguished: constant transport speed and constant rpm. The original scheme proposed by Benson accounted for large deformation, and used a nonlinear elastic constitutive law; in this paper, the Benson model is first expressed in dimensionless form and extended to account for roll rotation in both cases: constant rpm and constant transport speed. Additionally, tangential dynamics are considered to account for angular acceleration of a fully-wound roll. In general, it is seen that the inclusion of angular velocity in the Benson model alters the lap deformation, interlayer pressure and lap tension profiles compared to the case with no rotation, to an extent determined by the magnitude of angular velocity. A direct consequence of this is that there is now an upper bound on the number of laps that can be safely wound onto the core without loss of contact between the outer-most laps, and this is a function of rotational speed and wrapping tension, among other parameters. A numerical algorithm is then described to account for angular acceleration due to a constant core torque applied after the roll has been completely wound. This allows one to determine the slip profile through the roll at various instants during the motion.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In