0

Full Content is available to subscribers

Subscribe/Learn More  >

Planar Duct Heat Transfer With Turbulence Enhancing Obstacles for Combustor Liner External Cooling

[+] Author Affiliations
Gordon E. Andrews, Ibrahim M. Khalifa

University of Leeds, Leeds, West Yorkshire, UK

Paper No. GT2007-27418, pp. 1355-1364; 10 pages
doi:10.1115/GT2007-27418
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

Parallel plate combustor wall cooling was investigated. The combustor air flowed down the gap between two flat surfaces in a low pressure loss configuration. The work was aimed at combustor liner external air cooling for regenerative combustor cooling prior to entering a lean low NOx combustor. The test rig was 152 mm square and the test section was a duct of 152mm width and height of 10 and 5mm with a 152mm length. The experimental investigation involved the measurement of the heat transfer coefficient using the lumped capacity method. together with overall wall cooling effectiveness measurements in a hot duct test rig. The compromise between increased pressure loss and enhanced heat transfer for obstacles in the duct was investigated. It was shown that at coolant flow rates comparable with combustor requirements, adequate wall cooling effectiveness could be achieved using this technique. The cooling effectiveness performance was compared with the alternative technique of impingement cooling using low impingement jet pressure loss.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In