0

Full Content is available to subscribers

Subscribe/Learn More  >

Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes

[+] Author Affiliations
M. D. Barringer

Virginia Polytechnic Institute and State University, Blacksburg, VA

M. D. Polanka, J. P. Clark, P. J. Koch

U.S. Air Force Research Laboratory, Wright-Patterson AFB, OH

K. A. Thole

Pennsylvania State University, University Park, PA

Paper No. GT2007-27157, pp. 1335-1346; 12 pages
doi:10.1115/GT2007-27157
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

The high pressure turbine stage within gas turbine engines is exposed to combustor exit flows that are nonuniform in both stagnation pressure and temperature. These highly turbulent flows typically enter the first stage vanes with significant spatial gradients near the inner and outer diameter endwalls. These gradients can result in secondary flow development within the vane passage that is different than what classical secondary flow models predict. The heat transfer between the working fluid and the turbine vane surface and endwalls is directly related to the secondary flows. The goal of the current study was to examine the migration of different inlet radial temperature and pressure profiles through the high turbine vane of a modern turbine engine. The tests were performed using an inlet profile generator located in the Turbine Research Facility (TRF) at the Air Force Research Laboratory (AFRL). Comparisons of area-averaged radial exit profiles are reported as well as profiles at three vane pitch locations to document the circumferential variation in the profiles. The results show that the shape of the total pressure profile near the endwalls at the inlet of the vane can alter the redistribution of stagnation enthalpy through the airfoil passage significantly. Total pressure loss and exit flow angle variations are also examined for the different inlet profiles.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In