0

Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation of Heat Generation Characteristics of Brush Seals

[+] Author Affiliations
Mehmet Demiroglu, John A. Tichy

Rensselaer Polytechnic Institute, Troy, NY

Paper No. GT2007-28043, pp. 1261-1270; 10 pages
doi:10.1115/GT2007-28043
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

Brush seals are considered as a category of compliant seals, which tolerate a great high level of interference between the seal and the rotor or shaft. Their superior leakage characteristics have opened many application fields in the turbo-machinery world, ranging from industrial steam turbines to jet engines. However, brush seal designers have to find a trade-off between the lower parasitic leakage but higher heat generation properties of brush seals for given operation conditions. As brush seals can maintain contact with the rotor for a wide range of operating conditions, the contact force/pressure generated at the seal-rotor interface becomes an important design parameter for sustained seal performance and longevity of its service life. Furthermore, due to this contact force at the interface, frictional heat generation is inevitable and must be evaluated for various design and operating conditions. In this paper, frictional heat generation at the sealrotor interface is studied. To capture temperature rise at the interface, a thermal image of the seal and rotor is taken with an infrared camera under various operating conditions. The temperature map of the rotor is compared to results from thermal finite element analysis of the rotor to back calculate the heat flux to the rotor. A closed form equation for frictional heat generation is suggested as a function of seal design parameters, material properties, friction coefficient and empirical factors from testing.

Copyright © 2007 by ASME
Topics: Heat

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In