0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Pressure Ratio and Sealing Clearance on Leakage Flow Characteristics in the Rotating Honeycomb Labyrinth Seal

[+] Author Affiliations
Jun Li, Xin Yan, Guojun Li, Zhenping Feng

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. GT2007-27740, pp. 1199-1206; 8 pages
doi:10.1115/GT2007-27740
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

Honeycomb stepped labyrinth seals in turbomachinery enhance aerodynamic efficiency by reducing leakage flow losses through the clearance between rotating and stationary components. The influence of pressure ratio and sealing clearance on the leakage flow characteristics in the honeycomb stepped labyrinth seal is numerically determined. The geometries investigated represent designs of the honeycomb labyrinth seal typical for modern turbomachinery. The leakage flow fields in the honeycomb and smooth stepped labyrinth seals are obtained by the Reynolds-Averaged Navier-Stokes solution using the commercial software FLUENT. Numerical simulations covered a range of pressure ratio and three sizes of sealing clearance for the honeycomb and smooth stepped labyrinth seals. The numerical discharge coefficients of the non-rotating honeycomb and smooth stepped labyrinth seals are in good agreement with previous experimental data. In addition rotational effects are also taken into account in numerical computations. The numerical results show that the leakage flow rate increases with the increasing pressure ratio at the fixed sealing clearance for the rotating and non-rotating honeycomb labyrinth seal. The influence of the sealing clearance on the leakage flow pattern for the rotating and non-rotating honeycomb labyrinth seal are observed. Moreover, the similar leakage flow rates are obtained at the same flow condition between the rotating and non-rotating honeycomb labyrinth seal due to the honeycomb acts to kill swirl velocity development for the rotating honeycomb labyrinth seal.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In