Full Content is available to subscribers

Subscribe/Learn More  >

Labyrinth Seal Leakage Tests: Tooth Profile, Tooth Thickness, and Eccentricity Effects

[+] Author Affiliations
Ahmed M. Gamal, John M. Vance

Texas A&M University, College Station, TX

Paper No. GT2007-27223, pp. 1127-1138; 12 pages
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME


The effects of two seal design parameters, namely blade (tooth) thickness and blade profile, on labyrinth seal leakage, as well as the effect of operating a seal in an off-center position, were examined through a series of non-rotating tests. Two reconfigurable seal designs were used, which enabled testing of two- four-, and six-bladed see-through labyrinth seals with different geometries using the same sets of seal blades. Leakage and cavity pressure measurements were made on each of twenty-three seal configurations with a four inch (101.6 mm) diameter journal. Tests were carried out with air as the working fluid at supply pressures of up to 100 psi-a (6.89 bar-a). Experimental results showed that doubling the thickness of the labyrinth blades significantly influenced leakage, reducing the flow-rate through the seals by up to 20%. Tests to determine the effect of blade-tip profile produced more equivocal results, with the results of experiments using each of the two test seal designs contradicting each other. Tests on one set of hardware indicated that beveling blades on the downstream side was most effective in limiting leakage whereas tests on newer hardware with tighter clearances indicated that seals with flat-tipped blades were superior. The test results illustrated that both blade profile and blade thickness could be manipulated so as to reduce seal leakage. However, an examination of the effects of both factors together indicated that the influence of one of these parameters can, to some extent, negate the influence of the other (especially in cases with tighter clearances). Lastly, for all configurations tested, results showed that leakage through a seal increases with increased eccentricity and that this phenomenon was considerably more pronounced at lower supply pressures.

Copyright © 2007 by ASME
Topics: Thickness , Leakage



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In