Full Content is available to subscribers

Subscribe/Learn More  >

Synchronizing Separation Flow Control With Unsteady Wakes in a Low-Pressure Turbine Cascade

[+] Author Affiliations
M. Bloxham, D. Reimann, K. Crapo, J. Pluim, J. P. Bons

Brigham Young University, Provo, UT

Paper No. GT2007-27529, pp. 1039-1050; 12 pages
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME


Particle image velocimetry (PIV) measurements were made on a highly loaded low-pressure turbine blade in a linear cascade. The Pack B blade has a design Zweifel coefficient of 1.15 and a peak Cp at 63% axial chord on the suction surface. Data were taken at Rec = 20K with 3% inlet freestream turbulence and a wake passing flow coefficient of 0.8. Without unsteady wakes, a non-reattaching separation bubble exists on the suction surface of the blade beginning at 68% axial chord. The time averaged separation zone is reduced in size by approximately 35% in the presence of unsteady wakes. Phase-locked hot-wire and PIV measurements were used to document the dynamics of this separation zone when subjected to synchronized, unsteady forcing from a spanwise row of vortex generator jets (VGJs) in addition to the unsteady wakes. The phase difference between VGJ actuation and the wake passing was optimized. Both steady state Cp and phase-locked velocity measurements confirm that the optimal combination of wakes and jets yields the smallest separation.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In