0

Full Content is available to subscribers

Subscribe/Learn More  >

Aero-Thermal Investigations of Tip Leakage Flow In Axial Flow Turbines: Part II — Effect of Relative Casing Motion

[+] Author Affiliations
S. K. Krishnababu, W. N. Dawes, H. P. Hodson

University of Cambridge, Cambridge, UK

G. D. Lock

University of Bath, Bath, UK

J. Hannis

Siemens Industrial Turbomachinery, Ltd., Lincoln, Lincolnshire, UK

C. Whitney

Alstom Power Technology Centre, Leicester, UK

Paper No. GT2007-27957, pp. 739-747; 9 pages
doi:10.1115/GT2007-27957
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

A numerical study has been performed to investigate the effect of casing motion on the tip leakage flow and heat transfer characteristics in unshrouded axial flow turbines. The relative motion between the blade tip and the casing was simulated by moving the casing in a direction from the suction side to the pressure side of the stationary blade. Baseline flat tip geometry and squealer type geometries namely double squealer or cavity and suction side squealer were considered at a clearance gap of 1.6%C. The computations were performed using a single blade with periodic boundary conditions imposed along the boundaries in the pitchwise direction. Turbulence was modelled using the SST k-ω model. The flow conditions correspond to an exit Reynolds number of 2.3×105 . The results were compared with those obtained without the relative casing motion reported in part I of this paper. In general, the effect of relative casing motion was to decrease the tip leakage mass flow and the average heat transfer to the tip due to the decrease in leakage flow velocity caused by a drop in driving pressure difference. Compared to the computations with stationary casing, in the case of all the three geometries considered, the average heat transfer to the suction surface of the blade was found to be larger in the case of the computations with relative casing motion. At a larger clearance gap of 2.8%C, in case of flat tip, while the tip leakage mass flow decreased due to relative casing motion only a smaller change in the average heat transfer to the tip and the suction surface of the blade was noticed.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In