0

Full Content is available to subscribers

Subscribe/Learn More  >

Combined Effects of Wakes and Jet Pulsing on Film Cooling

[+] Author Affiliations
Kristofer M. Womack, Ralph J. Volino, Michael P. Schultz

United States Naval Academy, Annapolis, MD

Paper No. GT2007-27921, pp. 715-726; 12 pages
doi:10.1115/GT2007-27921
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

Pulsed film cooling jets subject to periodic wakes were studied experimentally. The wakes were generated with a spoked wheel upstream of a flat plate. Cases with a single row of cylindrical film cooling holes inclined at 35 degrees to the surface were considered at blowing ratios, B, of 0.50, and 1.0 with jet pulsing and wake Strouhal numbers of 0.15, 0.30, and 0.60. Wake timing was varied with respect to the pulsing. Temperature measurements were made using an infrared camera, thermocouples, and constant current (cold wire) anemometry. The local film cooling effectiveness and heat transfer coefficient were determined from the measured temperatures. Phase locked flow temperature fields were determined from cold wire surveys. With B = 0.5, wakes and pulsing both lead to a reduction in film cooling effectiveness, and the reduction is larger when wakes and pulsing are combined. With B = 1.0, pulsing again causes a reduction in effectiveness, but wakes tend to counteract this effect somewhat by reducing jet liftoff. At low Strouhal numbers, wake timing had a significant effect on the instantaneous film cooling effectiveness, but wakes in general had very little effect on the time averaged effectiveness. At high Strouhal numbers, the wake effect was stronger, but the wake timing was less important. Wakes increased the heat transfer coefficient strongly and similarly in cases with and without film cooling, regardless of wake timing. Heat transfer coefficient ratios, like the time averaged film cooling effectiveness, did not depend strongly on wake timing for the cases considered.

Copyright © 2007 by ASME
Topics: Cooling , Wakes

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In