Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Anti-Vortex Turbine Film Cooling Hole Concept

[+] Author Affiliations
James D. Heidmann

NASA Glenn Research Center, Cleveland, OH

Srinath Ekkad

Louisiana State University, Baton Rouge, LA

Paper No. GT2007-27528, pp. 487-496; 10 pages
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3


A novel turbine film cooling hole shape has been conceived and designed at NASA Glenn Research Center. This “anti-vortex” design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The hole design is intended to counteract the detrimental vorticity associated with standard circular cross-section film cooling holes. This vorticity typically entrains hot freestream gas and is associated with jet separation from the turbine blade surface. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30 degree angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A blowing ratio of 1.0 and density ratios of 1.05 and 2.0 are studied. Both film effectiveness and heat transfer coefficient values are computed and compared to standard round hole cases for the same blowing rates. A net heat flux reduction is also determined using both the film effectiveness and heat transfer coefficient values to ascertain the overall effectiveness of the concept. An improvement in film effectiveness of about 0.2 and in net heat flux reduction of about 0.2 is demonstrated for the anti-vortex concept compared to the standard round hole for both blowing ratios. Detailed flow visualization shows that as expected, the design counteracts the detrimental vorticity of the round hole flow, allowing it to remain attached to the surface.

Topics: Cooling , Turbines , Vortices



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In