Full Content is available to subscribers

Subscribe/Learn More  >

Endwall Heat Transfer Measurements in a Staggered Pin Fin Array With an Adiabatic Pin

[+] Author Affiliations
Forrest E. Ames

University of North Dakota, Grand Forks, ND

Chad A. Nordquist

3M Hutchinson, Hutchinson, MN

Lindsay A. Klennert

Sandia National Laboratories, Albuquerque, NM

Paper No. GT2007-27432, pp. 423-432; 10 pages
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME


Full surface endwall heat transfer distributions have been acquired in a staggered pin fin array with the use of an infrared camera. Values are presented at Reynolds numbers of 3000, 10,000 and 30,000 based on pin diameter and average velocity through adjacent pins. Average endwall Nusselt numbers agree closely with archival values at each Reynolds number. Locally averaged heat transfer levels show a substantial increase from the inlet through the first few rows and finally a nearly streamwise periodic condition in the second half of the eight row geometry. Increasing levels of heat transfer in the inlet region can be attributed to the leading edge vortex system, flow acceleration around pins, and the generation of turbulence. Distributions of turbulence intensity and turbulent scale are shown to help document the turbulent transport conditions through the array. Detailed endwall Nusselt number distributions are presented and compared at the three Reynolds numbers for the first four and last four rows. These detailed heat transfer distributions highlight the influence of the horseshoe vortex system in the entrance region and the wake generated turbulence throughout the pin fin array. Local velocity and turbulence distributions are presented together with local Stanton number and skin friction coefficient data to examine the aggressive nature of the turbulent mixing.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In