0

Full Content is available to subscribers

Subscribe/Learn More  >

Film Cooling From a Row of Holes Supplemented With Anti Vortex Holes

[+] Author Affiliations
Alok Dhungel, Yiping Lu, Wynn Phillips, Srinath V. Ekkad

Louisiana State University, Baton Rouge, LA

James Heidmann

NASA Glenn Research Center, Cleveland, OH

Paper No. GT2007-27419, pp. 375-384; 10 pages
doi:10.1115/GT2007-27419
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

The primary focus of this paper is to study the film cooling performance for a row of cylindrical holes each supplemented with two symmetrical anti vortex holes which branch out from the main holes. The anti-vortex design was originally developed at NASA-Glenn Research Center by Dr. James Heidmann, co-author of this paper. This “anti-vortex” design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The hole design is intended to counteract the detrimental vorticity associated with standard circular cross-section film cooling holes. The geometry and orientation of the anti vortex holes greatly affect the cooling performance downstream, which is thoroughly investigated. By performing experiments at a single mainstream Reynolds number of 9683 based on the free stream velocity and film hole diameter at four different coolant-to-mainstream blowing ratio of 0.5, 1, 1.5, 2 and using the transient IR thermography technique, detailed film cooling effectiveness and heat transfer coefficients are obtained simultaneously from a single test. When the anti vortex holes are nearer to the primary film cooling holes and are developing from the base of the primary holes, better film cooling is accomplished as compared to other anti vortex hole orientations. When the anti vortex holes are laid back in the upstream region, film cooling diminishes considerably. Although an enhancement in heat transfer coefficient is seen in cases with high film cooling effectiveness, the overall heat flux ratio as compared to standard cylindrical holes is much lower. Thus cases with anti vortex holes placed near the main holes certainly show promising results.

Copyright © 2007 by ASME
Topics: Cooling , Vortices

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In