0

Full Content is available to subscribers

Subscribe/Learn More  >

Gill Slot Trailing Edge Aerodynamics: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Aerodynamics Losses and Pressure Distribution

[+] Author Affiliations
F. E. Ames, J. D. Johnson, N. J. Fiala

University of North Dakota, Grand Forks, ND

Paper No. GT2007-27399, pp. 363-373; 11 pages
doi:10.1115/GT2007-27399
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

Gill slots (also called cutbacks) are a common method to cool the trailing edge of vanes and blades and to eject spent cooling air. Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a gill slot vane in a large scale low speed cascade facility. These measurements are compared with exit surveys of the base (solid) vane configuration. Exit surveys have been taken over a four to one range in chord Reynolds numbers (500,000,1,000,000, and 2,000,000) based on exit conditions and for low (0.7%), grid (8.5%), and aero-combustor (13.5%) turbulence conditions with varying blowing rate (50%, 100%, 150%, and 200% design flow). Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at two stations representing axial chord spacings of 0.25 and 0.50. Differences between losses with and without the gill slot for a given turbulence condition and Reynolds number are compared providing evidence of coolant ejection losses and losses due to the separation off the gill slot lip. Additionally, differences in the level of losses, distribution of losses, and secondary flow vectors are presented for the different turbulence conditions and at the different Reynolds numbers. The turbulence condition has been found to have only a small affect on the increase in losses due to the gill slot. However, decreasing Reynolds number has been found to produce an increasing increment in losses. The present paper together with a companion paper, which documents gill slot heat transfer, is intended to provide designers with the heat transfer and aerodynamic loss information needed to compare competing trailing edge designs.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In