Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Rotation on Heat/Mass Transfer for an Impingement/Effusion Cooling System

[+] Author Affiliations
Sung Kook Hong, Hyung Hee Cho

Yonsei University, Seoul, South Korea

Paper No. GT2007-27265, pp. 269-278; 10 pages
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME


The purpose of this study is to investigate the effect of rotation on the heat/mass transfer in an impingement/effusion cooling system. To simulate the rotating impingement/effusion system, a test duct with injection and effusion holes is installed on the rotating system. The jet Reynolds number based on the hole diameter is fixed to 3,000 and the Rotation number is set to 0.032. The experiments are carried out for various parameters such as the plate spacing to hole diameter ratio (H/d), orientation of the jet relative to the rotating axis and the tests for the array jet cooling are performed together. The naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. The local heat/mass transfer distributions are altered by the rotation. For the impingement/effusion cooling with orthogonal orientation, the low and non-uniform heat/mass transfer occurs between the effusion holes because the impinging jet is deflected by the Coriolis force. At a small H/d, the rotation enhances the heat/mass transfer in the stagnation region due to an increase in flow mixing. The impingement/effusion cooling with H/d = 2 shows the most efficient cooling performance and it is confirmed that the crossflow and H/d affect the averaged Sh value significantly under rotating conditions.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In