0

Full Content is available to subscribers

Subscribe/Learn More  >

Film Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique

[+] Author Affiliations
A. Suryanarayanan, B. Ozturk, M. T. Schobeiri, J. C. Han

Texas A&M University, College Station, TX

Paper No. GT2007-27122, pp. 169-183; 15 pages
doi:10.1115/GT2007-27122
From:
  • ASME Turbo Expo 2007: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2007, Parts A and B
  • Montreal, Canada, May 14–17, 2007
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4793-4 | eISBN: 0-7918-3796-3
  • Copyright © 2007 by ASME

abstract

Film cooling effectiveness is measured on a rotating turbine blade platform for coolant injection through discrete holes using pressure sensitive paint technique (PSP). Most of the existing literatures provide information only for stationary end-walls. The effects of rotation on the platform film cooling effectiveness are not well documented. Hence, the existing 3-stage turbine research facility at TPFL, Texas A&M University was re-designed and installed to enable coolant gas injection on the 1st stage rotor platform. Two distinct coolant supply loops were incorporated into the rotor to facilitate separate feeds for upstream cooling using stator-rotor gap purge flow and downstream discrete-hole film cooling. As a continuation of the previously published work involving stator-rotor gap purge cooling, this study investigates film cooling effectiveness on the 1st stage rotor platform due to coolant gas injection through nine discrete holes located downstream within the passage region. Film cooling effectiveness is measured for turbine rotor frequencies of 2400rpm, 2550rpm and 3000rpm corresponding to rotation numbers of Ro = 0.18, 0.19 and 0.23 respectively. For each of the turbine rotational frequencies, film cooling effectiveness is determined for average film-hole blowing ratios of Mholes = 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0. To provide a complete picture of hub cooling under rotating conditions, simultaneous injection of coolant gas through upstream stator-rotor purge gap and downstream discrete film-hole is also studied. The combined tests are conducted for gap purge flow corresponding to coolant to mainstream mass flow ratio of MFR = 1% with three downstream film-hole blowing ratios of Mholes = 0.75, 1.0 and 1.25 for each of the three turbine speeds. The results for combined upstream stator-rotor gap purge flow and downstream discrete holes provide information about the optimum purge flow coolant mass, average coolant hole blowing ratios for each rotational speed and coolant injection location along the passage to obtain efficient platform film cooling.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In