Full Content is available to subscribers

Subscribe/Learn More  >

Relative Performance of a TGS for the Assay of Drummed Waste as Function of Collimator Opening

[+] Author Affiliations
S. C. Kane, S. Croft, P. McClay, R. Venkataraman, M. F. Villani

Canberra Industries, Inc., Meriden, CT

Paper No. ICEM2007-7174, pp. 1265-1269; 5 pages
  • The 11th International Conference on Environmental Remediation and Radioactive Waste Management
  • 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Bruges, Belgium, September 2–6, 2007
  • Conference Sponsors: Nuclear Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4339-0 | eISBN: 0-7918-3818-8
  • Copyright © 2007 by ASME


Improving the safety, accuracy and overall cost effectiveness of the processes and methods used to characterize and handle radioactive waste is an on-going mission for the nuclear industry. An important contributor to this goal is the development of superior non-destructive assay instruments. The Tomographic Gamma Scanner (TGS) is a case in point. The TGS applies low spatial resolution experimental computed tomograghy (CT) linear attenuation coefficient maps with three-dimensional high-energy resolution single photon emission reconstructions. The results are presented as quantitative matrix attenuation corrected images and assay values for gamma-emitting radionuclides. Depending on a number of operational factors, this extends the diversity of waste forms that can be assayed, to a given accuracy, to items containing more heterogeneous matrix distributions and less uniform emission activity distributions. Recent advances have significantly extended the capability to a broader range of matrix density and to a wider dynamic range of surface dose rate. Automated systems sense the operational conditions, including the container type, and configure themselves accordingly. The TGS also provides a flexible data acquisition platform and can be used to perform far-field style measurements, classical segmented gamma scanner measurements, or to implement hybrid methods, such as reconstructions that use a priori knowledge to constrain the image reconstruction or the underlying energy dependence of the attenuation. A single, yet flexible, general purpose instrument of this kind adds several tiers of strategic and tactical value to facilities challenged by a diverse and difficult to assay waste streams. The TGS is still in the early phase of industrial uptake. There are only a small number of general purpose TGS systems operating worldwide, most being configured to automatically select between a few configurations appropriate for routine operations. For special investigations, one may wish to widen the repertoire but there is currently little guidance as to the trade-offs involved. In this work, we address this weakness by studying the performance of a typical TGS arrangement as a function of collimator opening, scan pattern and scan time for a representative selection of simulated waste forms. Our focus is on assessing the impact on the precision and accuracy of the quantitative assay result but we also report the utility of the imaging information in confirming acceptable knowledge about the packages.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In