0

Full Content is available to subscribers

Subscribe/Learn More  >

Turbulent Impinging Flow Simulation for High-Level Waste Storage and Processing Applications

[+] Author Affiliations
S. Rhea, M. Fairweather

University of Leeds, Leeds, UK

Paper No. ICEM2007-7009, pp. 1031-1037; 7 pages
doi:10.1115/ICEM2007-7009
From:
  • The 11th International Conference on Environmental Remediation and Radioactive Waste Management
  • 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Bruges, Belgium, September 2–6, 2007
  • Conference Sponsors: Nuclear Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4339-0 | eISBN: 0-7918-3818-8
  • Copyright © 2007 by ASME

abstract

The efficient storage and processing of high-level nuclear waste could be improved by a better understanding of the behaviour of the particle-laden fluid flows involved. This work reports a mathematical modelling study of impinging single- and two-phase turbulent jets that is of relevance to the flows used industrially to prevent the settling of solid particles in storage tanks, and to re-suspend particles that form a bed. A computational fluid dynamic model, that embodies a Lagrangian particle tracking technique, is applied to the prediction of these flows. Predictions in the free flow and wall regions, and along the stagnation line, of the single-phase flow are in reasonable accord with data, although the addition of particles results in less satisfactory agreement between predictions and measurements. The influence of particles is, however, reproduced qualitatively by the mathematical model, with quantitative differences attributable to a lack of particle drag in the simulations. Uncertainties in experimental parameters may be responsible for some of the differences between predictions and data, and examination of the data used casts doubts on its reliability. Further work is required in terms of the use of more advanced turbulence modelling techniques, and the provision of detailed and reliable data sets.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In