0

Full Content is available to subscribers

Subscribe/Learn More  >

Removal of Mercury From Aqueous Solutions by ETS-4 Microporous Titanosilicate: Effect of Contact Time, Titanosilicate Mass and Initial Metal Concentration

[+] Author Affiliations
C. B. Lopes, M. Otero, Z. Lin, E. Pereira, C. M. Silva, J. Rocha, A. C. Duarte

University of Aveiro, Aveiro, Portugal

Paper No. ICEM2007-7201, pp. 1019-1023; 5 pages
doi:10.1115/ICEM2007-7201
From:
  • The 11th International Conference on Environmental Remediation and Radioactive Waste Management
  • 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Bruges, Belgium, September 2–6, 2007
  • Conference Sponsors: Nuclear Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4339-0 | eISBN: 0-7918-3818-8
  • Copyright © 2007 by ASME

abstract

Mercury is one of the most toxic heavy metals present in the environment and therefore is extremely important develop new, simple and reliable techniques for its removal from aqueous solutions. A recent line of research within this context is the application of microporous materials. The use of these materials for removing heavy metals from solutions may become a potential clean-up technology in the field of wastewater treatment. In this work it is reported the application of microporous titanosilicate ETS-4 as ion exchanger to remove Hg2+ from aqueous solution. Under batch conditions, we studied the effect of contact time, titanosilicate mass and initial Hg2+ concentration. Only 5 mg of ETS-4 are required to purify 2 litres of water with 50 μg L−1 of metal. Under the experimental conditions, the initial Hg2+ concentration and ETS-4 mass have strong influence on the sorption process, and it is proved that 24 h are almost always sufficient to attain ion exchange equilibrium. Langmuir and Freundlich isotherms were used to fit equilibrium experimental results. The kinetics of mercury removal was reliably described by a pseudo second-order model. On the whole, ETS-4 shows considerable potential to remove Hg2+ from wastewaters.

Copyright © 2007 by ASME
Topics: Metals

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In