0

Full Content is available to subscribers

Subscribe/Learn More  >

The Strategy of the Belgian Nuclear Research Centre in the Area of High-Level Waste Form Compatibility Research

[+] Author Affiliations
Karel Lemmens, Christelle Cachoir, Elie Valcke, Karine Ferrand, Marc Aertsens, Thierry Mennecart

Belgian Nuclear Research Centre, Mol, Belgium

Paper No. ICEM2007-7232, pp. 845-852; 8 pages
doi:10.1115/ICEM2007-7232
From:
  • The 11th International Conference on Environmental Remediation and Radioactive Waste Management
  • 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Bruges, Belgium, September 2–6, 2007
  • Conference Sponsors: Nuclear Division and Environmental Engineering Division
  • ISBN: 978-0-7918-4339-0 | eISBN: 0-7918-3818-8
  • Copyright © 2007 by ASME

abstract

The Belgian Nuclear Research Centre (SCK•CEN) has a long-standing expertise in research concerning the compatibility of waste forms with the final disposal environment. For high level waste, most attention goes to two waste forms that are relevant for Belgium, namely (1) vitrified waste from the reprocessing of spent fuel, and (2) spent fuel as such, referring to the direct disposal scenario. The expertise lies especially in the study of the chemical interactions between the waste forms and the disposal environment. This is done by laboratory experiments, supported by modeling. The experiments vary from traditional leach tests, to more specific tests for the determination of particular parameters, and highly realistic experiments. This results in a description of the phenomena that are expected upon disposal of the waste forms, and in quantitative data that allow a conservative long-term prediction of the in situ life time of the waste form. The predictions are validated by in situ experiments in the underground research laboratory HADES. The final objective of these studies, is to estimate the contribution of the waste form to the overall safety of the disposal system, as part of the Safety and Feasibility Case, planned by the national agency ONDRAF/NIRAS. The recent change of the Belgian disposal concept from an engineered barrier system based on the use of bentonite clay to a system based on a concrete buffer has caused a reorientation of the research programme. The expertise in the area of clay-waste interaction will however be maintained, to develop experimental methodologies in collaboration with other countries, and as a potential support to the decision making in those countries where a clay based near field is still the reference. The paper explains the current R&D approach, and highlights some recent experimental set-ups available at SCK•CEN for this purpose, with some illustrating results.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In